This function prepares the data to compute correlation by introducing NA's when lags are needed

prep.data(data, lags, timepoints)

Arguments

data

a matrix or data frame with rows representing genes and columns representing different timepoints. If data is a data frame, the gene names can be specified using the row.names().

lags

a vector of same length as the number of rows in the data column indicating the best lags

timepoints

a vector of time points used in the dataset

Value

a list of two matrices, one matrix with NA's for the lags for the dataset and another matrix with the timepoints used for each row in the dataset

Examples

prep.data(array(rnorm(20), c(5, 4)), c(0, 0, 0, -1, 1), timepoints = c(0, 5, 15, 30))
#> $data #> [,1] [,2] [,3] [,4] #> [1,] -0.5514917 1.8034834 1.1004919 -0.9754230 #> [2,] -0.8657535 -0.1050687 -0.1738201 -0.3385765 #> [3,] -0.3438315 0.9824534 0.1788120 1.1523471 #> [4,] -1.7133026 -0.6984294 0.4051012 NA #> [5,] NA 0.8130582 -0.8320195 -0.9604492 #> #> $time #> [,1] [,2] [,3] [,4] #> [1,] 0 5 15 30 #> [2,] 0 5 15 30 #> [3,] 0 5 15 30 #> [4,] 5 15 30 NA #> [5,] NA 0 5 15 #>
prep.data(array(runif(100, 0, 10), c(10, 10)), sample((-2:2), size = 10, replace = TRUE), timepoints = c(0, 5, 15, 30, 45, 60, 75, 80, 100, 120))
#> $data #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 2.467509 2.404612 4.194859 8.4554005 2.6969463 3.1611551 8.1423137 #> [2,] 1.432664 3.979936 6.388837 4.9555987 3.4585360 4.8828865 9.2452039 #> [3,] NA NA 8.900290 6.5029870 6.3209288 5.0339508 3.5270469 #> [4,] 1.552945 9.485788 2.505233 2.4873487 0.2701945 0.0247683 0.9196980 #> [5,] 5.083099 3.401192 9.790338 9.5872790 1.1804457 4.9583467 7.3779515 #> [6,] 6.273660 6.565796 3.599601 0.1369537 2.4379128 5.6974054 9.3642889 #> [7,] 3.642624 5.030267 8.249154 0.8984890 1.9898624 7.3572937 2.5574926 #> [8,] NA NA 6.229228 0.3857188 1.4511538 6.3054293 7.2628532 #> [9,] 8.240329 9.671391 8.767677 1.6813245 9.8219060 2.5157763 0.3994066 #> [10,] NA NA 1.634123 2.8598557 0.8603899 9.3028154 2.2648133 #> [,8] [,9] [,10] #> [1,] 1.5927475 NA NA #> [2,] 5.6658628 4.0159801 NA #> [3,] 0.6731983 0.5106245 9.064917 #> [4,] 8.8030903 4.1796604 NA #> [5,] 7.1931796 7.6393436 NA #> [6,] 7.9447767 NA NA #> [7,] 6.9648858 4.2943161 2.425870 #> [8,] 9.2396077 5.5231878 7.007675 #> [9,] 7.7064318 0.2910415 NA #> [10,] 4.0527020 6.2845017 4.315224 #> #> $time #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] #> [1,] 15 30 45 60 75 80 100 120 NA NA #> [2,] 5 15 30 45 60 75 80 100 120 NA #> [3,] NA NA 0 5 15 30 45 60 75 80 #> [4,] 5 15 30 45 60 75 80 100 120 NA #> [5,] 5 15 30 45 60 75 80 100 120 NA #> [6,] 15 30 45 60 75 80 100 120 NA NA #> [7,] 0 5 15 30 45 60 75 80 100 120 #> [8,] NA NA 0 5 15 30 45 60 75 80 #> [9,] 5 15 30 45 60 75 80 100 120 NA #> [10,] NA NA 0 5 15 30 45 60 75 80 #>